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A B S T R A C T

Accurate and reliable rainfall data is one of the fundamental prerequisites in hydrological modelling. The rainfall
data at a desired location can be reconstructed using interpolation methods, such as Inverse Distance Weighting
(IDW), which is frequently used in hydrology. In standard IDW neighbors are selected based on geographical
proximity or nearest neighbor (IDW_NN). However, in a basin with variable topography, nearby rain gauges may
be located at very different elevations and, thus, they may not accurately represent the spatial connection in
rainfall. In this work, the theory of networks, with nodes and links as the basis, is applied to select neighbors
while applying IDW. Two variants of neighbor selection models are proposed: IDW with linked neighbours
(IDW_LN) and IDW with clustered neighbors (IDW_CN). For reconstruction, thirty years of daily rainfall data
from 430 rain gauges in Murray-Darling Basin (MDB) are utilized. To evaluate the performance of the proposed
models, one-station-leave-out cross validation approach is used and the associated Root-Mean-Squared-Error
(RMSE) and Bias-percentage (BP) are calculated. Different values of number of neighbors (n), Correlation
Threshold (CT) and Clustering Coefficient Range (CCR) are used to measure the errors associated with the
proposed models. On comparing with IDW_NN, results show that reconstruction using IDW_LN has lower RMSE
at about 30 percent of stations and lower BP for about 50 percent of stations; while IDW_CN shows lower RMSE
at about 25 percent of stations and lower BP for about 45 percent of stations. The IDW_NN performed better than
IDW_LN and IDW_CN at more than 50 percent of stations though the average error associated with all the three
models are comparable for all CT values. In a natural system, a concept like traditional IDW (IDW_NN) may be
more accurate than the network-based approach (IDW_LN and IDW_CN) but may not be completely efficient in
accounting the spatial rainfall variability. The encouraging results for the reconstruction of rainfall in this study
seem to indicate that the approach can be further helpful in the reconstruction of a wide range of meteorological
parameters with spatial correlation.

1. Introduction

In hydrological modelling, reliable rainfall record is one of the basic
prerequisites. The data collected from available rain gauges in a
catchment may not provide the necessary or accurate information be-
cause of a number of reasons firstly, the density of the rain gauges may
be high in certain areas but very low in other areas even within a
catchment; secondly, some rain gauges may become dysfunctional and;
thirdly, the topography may be complex having many inaccessible re-
gions. The lack of rainfall data at a desired location can be overcome by
using spatial interpolation. Previous studies have examined, among
others, deterministic and stochastic approaches to reconstruct daily
records using spatial interpolation algorithms ranging from simple
techniques such as Thiessen polygons (Thiessen, 1911) or inverse

distance weighting (Di Piazza et al., 2011) schemes to more complex
and computationally intensive approaches such as geostatistical kriging
(Buytaert et al., 2006) or regression based PRISM interpolation (Daly
et al., 2008). Among all the different spatial interpolation methods, the
inverse distance weighting (IDW) (Robertson, 1967) is perhaps the
most commonly used method in hydrology.

The success of the IDW method depends fundamentally on the
presence of positive spatial correlations between the data observed at
neighboring rain gauges (Griffith, 1992). The underlying assumption is
that the data from nearby points are more related than the data from
locations far from each other, in accordance to Tobler’s first law of
Geography (Tobler, 1970). This presumption may not be applicable in
certain situations, particularly in regions with complex topography (Shi
et al., 2017). In such regions, even when rain gauges are located
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geographically closer, rainfall data recorded at seemingly neighboring
stations can vary significantly due to the variability in topography; see,
for instance, Berndtsson (1988) and Li et al. (2014) for additional de-
tails in relation to spatio-temporal variability. Spatial patterns are
consistently influenced by topography and wind direction, especially in
mountainous areas (Barros and Lettenmaier, 1993; Barry, 1992). Con-
sidering these limitations, a better understanding of spatial connections
between rain gauges and the effect of including such information in
IDW method need to be explored.

In recent years, the theory of networks has been widely applied for
studying the spatial and temporal evolution of a wide range of complex

systems and associated phenomena (Barabási and Albert, 1999; Girvan
and Newman, 2002; Konapala and Mishra, 2017; Li et al., 2010; Milo
et al., 2002). The application of network theory in hydrology and water
resources is relatively new with increasing number of publications on
the topics of connections in rainfall, stream flow, river networks, and
virtual water trade networks; see Sivakumar (2015) for a general ac-
count of this topic.

As for rainfall, Malik et al. (2012) investigated the spatial and
temporal characteristics of extreme (summer) monsoon rainfall in
South Asia. Boers et al. (2013) used networks based concepts to in-
vestigate the South American Monsoon System (SAMS) spatial

Fig. 1. Three variants of IDW, (a) standard IDW with nearest neighbors (IDW_NN); (b) to (d) shows steps in estimating linked neighbors for the model, IDW_LN; and
(e) IDW with clustered neighbors (IDW_CN).
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characteristics of extreme rainfall synchronicity by analyzing gridded
daily rainfall data; see also Boers et al. (2015) for subsequent complex
networks-based studies on South American rainfall. In order to examine
the annual dynamics of precipitation around the world, Scarsoglio et al.
(2013) analyzed a 70 year long (January 1941–December 2010)
gridded precipitation dataset. In the course of the analysis of monthly
rainfall data for a period of 68 years at 230 rain gauge stations across
Australia, Sivakumar and Woldemeskel (2015) employed the concepts
of clustering coefficient and degree distribution for the examination of
spatial connections in rainfall. The clustering coefficient is a measure of
local density and represents the tendency of a network to cluster (Watts
and Strogatz, 1998). Jha et al. (2015) attempted to provide a hydro-
logical explanation for the results of the complex network-based
methods for rainfall. The clustering coefficient method was applied to
two different rain gauge networks in Australia (57 stations in Western
Australian stations and 45 stations in the Sydney region) and the results
were interpreted as topographical properties of rain gauge stations
(latitude, longitude and elevation) and rainfall data characteristics
(mean, standard deviation and variation coefficient) (Jha and
Sivakumar, 2017). Naufan et al. (2018) studied the spatial connections
in rainfall data from a regional climate model, in the context of climate
change.

With the encouraging results detailed by these preliminary studies,
the present study aims to apply network theory to take into account the
spatial connections across a rain gauge network into the IDW approach
to reconstruct the rainfall data at a desired location. We use the con-
cepts of networks to analyze the significance of spatial connections and
spatial correlation in the rainfall network. We propose three variants of
Inverse distance weighing; i.e., IDW_NN (nearest neighbors) model,
IDW_LN (linked neighbors) model and IDW_CN (clustered neighbors)
model to study the significance of spatial and temporal connection over
spatial correlation. For implementation, we consider the daily rain
gauge data of 430 rain gauge stations, located in the Murray Darling
Basin. To evaluate the performance of the proposed models, we use the
one-station-leave-out cross validation approach. We also study the ef-
fect of location and elevation of the rain gauges on the performance of
the proposed models.

2. Methodology

2.1. IDW with nearest neighbors (IDW_NN)

We use the IDW method in its standard form to estimate the rainfall
at a desired location using weighted average of rainfall at 'n' nearest
neighbors as shown in Fig. 1(a) (referred as IDW_NN hereafter). The
following formula is used:
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where Pi is the estimate of rainfall at the desired location i; Px represents
rainfall at a neighboring location x; dxis the distance from the loca-
tion x to the location i where rainfall is being estimated; and n is the
number of neighborsand t is a positive real number, called the power
parameter. For the sake of simplicity, t=2 is considered in further IDW
calculation. Eq. (1) estimates the weighted average of the rainfall re-
corded at the nearest 'n' rain gauges. To select a fixed value of the
number of neighbors in the application of IDW_NN, a sensitivity ana-
lysis on the number of neighbors is performed. For the sensitivity
analysis, the nearest neighbors are varied from 1 to 15 in the calcula-
tion of IDW_NN and the error statistics associated with the re-
construction of the data are evaluated (more details about the sensi-
tivity analysis are provided in Section 4.1).

2.2. IDW with linked neighbors (IDW_LN)

In the case of IDW_NN, the neighbors are generally determined
based on the geographical proximity only, as is done in the present
study as well. Here, we introduce the concept of network to identify the
neighbors. A network is a set of points connected together by a set of
lines, as shown in Fig. 1(b). The points are called nodes or vertices, and
the lines are referred as links or edges. Mathematically, a network can
be represented as = P EG [ , ], where P is a set of N nodes ⋯P P PN( 1, 2, , )
and E is a set of M links. In the present context, rain gauges can be
considered as nodes of the network and the connections among them
will be the links. There are various ways and measures to study the
network properties, such as clustering coefficient, degree centrality,
and degree distribution; see Newman (2012) and Estrada (2012) for
details. The clustering coefficient is used in this study to investigate the
spatial connections in the rain gauge network. The clustering coefficient
CC( ) is a measure of the local density of a network and quantifies the
network’s tendency to cluster.

To find the clustering coefficient, the first step is to assign a corre-
lation threshold CT to identify the neighbors of research station i, i.e.
links that have correlations exceeding CT. We refer the number of such
neighbors as ki. For instance, suppose there are 10 rain gauges sur-
rounding the research node. Out of 10, there are only 5 rain gauges at
which the correlation of rainfall at the research node ‘i’ exceeds the
preselected CT value as shown in Fig. 1(b). Then there would be

−k k( 1)
2

i i possible links among ‘ki’ neighbors of research station ‘i’ (blue
lines in Fig. 1(c)) (see also Sivakumar and Woldemeskel (2014) for
additional details).

The second step in the estimation of clustering coefficient is to find
the possible links between ki nodes which also exceed beyond CT. Let Ei
be the number of links among neighboring stations with correlations
exceeding CT (four links shown in violet lines in Fig. 1(d). We refer the
corresponding nodes as linked neighbors of the research station. We
propose a variant of IDW_NN in which we consider only linked neigh-
bors in the IDW approach, which we refer as IDW_LN. Furthermore, to
study the sensitivity of CT on the reconstruction of data using IDW_LN,
the CT values are varied from 0.3 to 0.9 (more details about the sen-
sitivity analysis are provided in Section 4.3).

2.3. IDW with clustered neighbors (IDW_CN)

The third step in the calculation of CC at the research station is to
use formula:

=
−
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where Ei is the number of links that actually exist between these ki
stations and −k k( 1)

2
i i are the total number of possible links between these

ki stations. The procedure to find the value of Ei and ki is repeated for
each and every node (research gauge station) in the network to obtain
the clustering coefficient at the corresponding node. Once we get the CC
value for all the nodes in the network, different Clustering Coefficient
Ranges (CCR) can be defined to classify the nodes into various groups
(for example: four different clusters shown in red, green, yellow and
blue in Fig. 1(e)). Now, as another variant of IDW_NN, we can consider
only those nodes as neighbors which belong to the same CC range as the
research node in applying IDW; we refer this as IDW_CN hereafter.
Further, to study the sensitivity of CCR on the reconstruction of data
using IDW_CN, three CCR are fixed, i.e. 0.3 to 0.6, 0.4 to 0.7 and 0.5 to
0.8.

2.4. Verification of the interpolated rainfall

Once the rainfall has been reconstructed at the research node using
one of the three models (IDW_NN, IDW_LN, IDW_CN), we estimate the
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root-mean-square error (RMSE) and the bias percentage (BP) at that
node as follows:
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where P x( )i is the reconstructed rainfall and ∗P x( )i is the observed
rainfall at station xi. Lower value of RMSE and BP associated with the
reconstruction of data implies the better performance of the model used
in the reconstruction of the data. The RMSE measures the average
magnitude of the error; it is the representation of the data around the
line of best fit. The RMSE does not necessarily increase with the var-
iance of the errors but increases with the variance of the frequency
distribution of error magnitudes. However, the BP measures the
average tendency of the interpolated values to be larger or smaller than
their observed ones.

2.5. Experimental setup

We apply the one-station-leave-out cross validation approach to
assess the performance of the IDW_NN, IDW_LN, and IDW_CN models.
One-station-leave-out cross validation approach leaves one station out
of the training data, i.e. if there are n stations in the original sample
then, n-1 stations are used to train the model and the selected station is
used as the validation station. This is repeated for all combinations in
which the original sample can be separated this way, and then the error
is averaged for all trials, to give overall effectiveness. It is used in de-
termining the hyper parameters of a model, in the sense that it iden-
tifies which parameters will result in the lowest test error. As described
in sections 2.1 to 2.3, in applying three different IDWs, the number of
neighbors has to be determined. Also, in the case of IDW_LN and
IDW_CN, a suitable correlation threshold needs to be used. We perform
our analysis in the following three steps to systematically find out (i)
the sensitivity of number of neighbours, correlation threshold, and
clustering coefficient range on the reconstructed data, (ii) the re-
lationship of the error statistics associated with the reconstruction of
rainfall data with the elevation of the rain gauge stations, and (iii) the
spatial distribution of errors in the reconstructed rainfall data.

3. Study area and dataset

We consider rainfall data from the largest river basin in Australia,
namely the Murray-Darling Basin (MDB) (Fig. 2). The MDB contains the
catchment of the Murray River (length 2508 km) and the Darling River
(length 1472 km) covering a large portion of south-east area (approxi-
mately 106 km2) of the Australian continent. The basin extends from
−138.81o to −152.42o longitudes and −37.51o to −25.32o latitude. Most
regions of the basin are flat and low-lying but the coastal areas of the
basin contain mountains (the Great Dividing Range). The climate in the
MDB is mostly semi-arid causing variability in rainfall at different
temporal scales that affect Australian agriculture. Daily rainfall data
from 430 rain gauges for the period of January 1985 to December 2014
were collected from the Bureau of Meteorology (BoM) in Australia.
Table 1 provides a summary statistic of the rainfall data from the 430
rain gauges at the daily scale.

4. Results

To evaluate the relative improvement, if any, in the reconstructed
rainfall data using the concept of networks, we devise two sets of ex-
periments: compare results of IDW_LN with IDW_NN, and that of
IDW_CN with IDW_NN. The results from IDW_NN are used as reference.
The number of neighbors in IDW_LN and IDW_CN models is expected to
vary by changing CT, clustering coefficient range (CCR) and other

relevant parameters. Further, in special cases when, for instance, CT is
very high; a research node may not have any neighbor at all. To avoid
such scenarios in the analysis, we introduce the concept of a valid
station, the interpretation of which is slightly different in case of
IDW_LN and IDW_CN models.

4.1. Sensitivity of the number of neighbors in IDW_NN model

To perform the sensitivity analysis, we vary the number of neigh-
bors from 1 to 15 and use leave-one-station-out cross validation at each
rain gauge station. The RMSE and BP values presented in Fig. 3a and
3b, respectively, show the error values averaged over 430 rain gauge
stations. It is clear from the plots that both average RMSE and average
BP decrease (except average BP for 6 neighbors where a slight increase
is seen) as the number of neighbors increases from 1 to 15. The mag-
nitude of average RMSE values varies from 3.11 to 3.86, while the
average BP values vary from 16 to 18.5. Low error statistics demon-
strate that the IDW_NN model is able to reconstruct the rainfall data
accurately over a major part of the basin. Since the ranges of RMSE and
BP are low, it can also be concluded that the variation in the error
values with the increase in the number of neighbors is not significant.
The purpose of the sensitivity analysis was to select a fixed number of
neighbors which can be used in later analysis using IDW_LN and
IDW_CN. Fig. 3 shows that after number of neighbors equals to five,
there is no significant change in the average error values; hence, we
decide to use five neighbors in further analysis. The average RMSE with
5 neighbors in IDW_NN is 3.19 and the associated average BP is 16.166,
as shown in Fig. 3. In future analysis, we will use these error statistics
(RMSE=3.19, and BP=16.17) to compare the performance of the
IDW_LN and IDW_CN models.

4.2. Concept of a valid station

A valid station is a rain gauge station for which a specific model
(IDW_LN or IDW_CN) will have sufficient number of neighbors for the
reconstruction of rainfall. For the IDW_NN model, all rain gauges are
valid stations because the selection of neighbors is independent of a
certain CT or CCR. In the case of IDW_LN model, we define a valid
station only when it has at least five neighbors (as obtained in the
previous section) for a given CT. Similarly, for the IDW_CN model, a
station with at least five neighbors for a given CT and CCR is considered
a valid station.

4.3. Sensitivity of the CT in IDW_LN model

After fixing the number of neighborhood to five, the next task is to
fix the correlation threshold used in the IDW_LN model. The sensitivity
analysis of CT is performed by changing its values from 0.3 to 0.9 in the
IDW_LN model. It is expected that with the increase in CT, the number
of valid stations would go down. Table 2 shows that out of 430 rain
gauge stations, 427 are identified as valid stations by applying a very
low threshold on correlation as 0.3. With the increase in CT up to 0.6,
there are minor changes in the number of valid stations; however, there
was a major drop in the number of valid stations for CT=0.7 and
higher. Both the IDW_NN and IDW_LN models were applied at the same
set of valid stations to estimate the error statistics, RMSE and BP. For
instance, 422 valid stations exist by using CT=0.4; then for each of
these 422 stations, we use 5 geographically nearby neighbors (as
decided in Section 4.2) to apply IDW_NN; on the other hand, we use 5
linked neighbors in the calculation of IDW in case of IDW_LN. The
average values of RMSE and BP correspond to errors averaged over all
the valid stations (e.g., 422 in case of CT=0.4). Table 2 shows that the
average RMSE decreases as CT increases which is valid for both
IDW_NN and IDW_LN models. By comparing the third and fourth col-
umns in Table 2, it can be concluded that the value of average RMSE is
relatively higher in the case of reconstructed rainfall using IDW_LN.
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Similar observation is also made in the case of average BP (as shown in
Table2). Since these results are averaged values of errors over all the
valid stations, we decide to explore what percentage of valid stations
actually shows less RMSE and/or BP using the IDW_LN model. From
Table 2, it can be seen that at about 28.5 to 31.8% of valid stations,
RMSE in reconstructing the data using the IDW_LN model is lower than

that from the IDW_NN model. Similarly, at about 28.5 to 50.3% of valid
stations, BP values are found to be less when the IDW_LN model is used
in reconstructing the rainfall data. The average RMSE and BP values
associated with both IDW_NN and IDW_LN are comparable.

The next obvious question is to determine at each of the valid sta-
tions, whether the RMSE and BP values are higher from the IDW_NN
model or from the IDW_LN. Fig. 4 shows the scatter diagram between
the errors associated with each valid station from both of these IDW
models. In Fig. 4, if the points fall on the identity line, it means that at a
valid station, the errors in the reconstructed rainfall data from the
IDW_NN and IDW_LN models are equal. If a point falls above or below
the identity line, it will be interpreted as the associated error from the
IDW_LN model is higher or lower, respectively. For the sake of sim-
plicity in presentation, plots corresponding to only 3 CT values, i.e., 0.4,
0.6 and 0.8 are shown in Fig. 4. As seen, the cloud of points decreases as
CT increases because the number of valid stations decreased

Fig. 2. The Murray-Darling Basin with the locations of 430 rain gauges.

Table 1
Summary statistics of rainfall at 430 gauging stations at daily temporal
scale.

Statistics Value

Length of data 10957 days
Range of mean (mm) 0.21–3.79
Range of Standard Deviation (mm) 1.84–10.32
Range of maximum rainfall (mm) 53–482

Fig. 3. Plots of average error associated with IDW_NN against the number of neighbors in the inverse distance weighing application.
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significantly from 422 to 7 (see Table 2).
In Fig. 4(a) to (c), as the points are close to the identity line, the

difference in the associated RMSE with IDW_NN and IDW_LN is quite
low. On the other hand, the plots of the BP error, indicate in Fig. 4(d) to
(f) shows a much wider scatter than the RMSE error, mainly because the
percentage bias is relative and RMSE is absolute error.

4.4. Variation of errors in IDW_LN with location of valid stations

Since there is a large topographical variation in MDB (see Fig. 2), we
investigate into whether there is a relationship between the errors in
reconstructing the rainfall data and the elevation of the rain gauge
station when the IDW_NN and IDW_LN models are used. In this direc-
tion, the first task is to observe the location of the valid stations located
in the MDB where the IDW_LN model performed better than IDW_NN
model. The aim here is to examine whether by introducing the concept
of network, the reconstruction model is able to take into account the
topographical variations better or not.

Fig. 5 shows the performance of the IDW_LN model compared to the
IDW_NN model as a function of topography of the rain gauge stations.
Fig. 5(a) shows the location of the valid stations with lower RMSE and
BP using the IDW_LN model compared to errors associated with the
IDW_NN model for CT=0.3 to 0.6 (Since the number of valid stations
decreased significantly after CT=0.6, we choose to present the loca-
tions of the valid stations in the MDB only corresponding to four CT
values, i.e. 0.3 to 0.6). From both the rows of Fig. 5(a), it is evident that

the number of valid stations decreases with an increase in the CT value
from 0.3 to 0.6. The north-west part of the MDB has the least number of
valid stations for IDW_LN (empty square in Fig. 5(a)), which implies
that it is the least-connected region of the basin based on the correlation
of rain gauge data. Similarly, the second row of Fig. 5(a) shows that the
valid stations corresponding to lower BP are more or less equally dis-
tributed in the MDB.

Fig. 5(b) shows the performance of the IDW_LN model as a function
of different elevation bands of the rain gauges. The whole rain gauge
network is divided into six elevation bands, i.e. below 200m, 200 to
400m, 400 to 600m, 600 to 800m, 800 to 1000m, and above 1000m.
For each elevation band, Fig. 5(b) presents the bar plots of the total
number of rain gauges associated with the band, total number of
IDW_LN valid stations associated with the band, total number of valid
stations with lower RMSE from IDW_LN as compared to IDW_NN and
total number of valid stations with lower BP from IDW_LN as compared
to IDW_NN. For simplicity, only CT=0.6 is considered for presentation
in Fig. 5(b). It can be concluded, from Fig. 5(b), that the rain gauge
stations where the IDW_LN model showed lower RMSE than the
IDW_NN model is equal to nearly 30 percent of the valid stations in that
particular elevation band. This implies that the performance of the
model is independent of the elevation of the rain gauge stations. The
rain gauge stations which yielded lower BP from IDW_LN than the
IDW_NN model is equal to nearly 50 percent of the valid stations in all
the elevation bands (see Fig. 5(b)). Thus, it is not straightforward to
derive any definite conclusion about the effect of topography on the

Table 2
Summary statistics of errors (RMSE and BP) associated with the IDW_LN models.

Error statistic Number of valid stations Average RMSE % valid stations showing less error with
IDW_LN

Average BP % valid stations showing less error with LN

Model Type IDW_NN IDW_LN IDW_NN IDW_LN

CT
0.300 427 3.185 3.332 29.977 12.86 14.072 44.965
0.400 422 3.172 3.319 29.858 11.408 12.796 45.972
0.500 398 3.131 3.282 29.397 9.745 10.886 48.744
0.600 304 2.954 3.112 31.579 8.970 9.716 50.329
0.700 132 2.629 2.737 31.818 9.395 10.599 46.212
0.800 7 2.395 2.431 28.571 8.596 10.399 28.571
0.900 0 NaN NaN NaN NaN NaN NaN

Fig. 4. Comparison of errors between IDW_NN model and IDW_LN model for all valid stations.
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performance of IDW_LN and IDW_NN models in the reconstruction of
the rainfall using either the IDW_LN model or the IDW_NN model (see
Fig. 5(a) and (b)).

4.5. Variation of errors in the IDW_LN model with elevations of valid
stations

Next, we explore the relationship between the elevations of the

valid stations and the magnitude of the associated error estimates from
the IDW_LN model in reconstructing the rainfall data. In Fig. 6, the
RMSE and BP values associated with each of the valid stations are
plotted against its elevation for CT=0.4, 0.6 and 0.8 (For simplicity,
we present the results for only these three selected CT values). As it is
clear from the scatter of values in Fig. 6(a) to 6(c), the valid stations
with low RMSE obtained from the IDW_LN model are situated at low
elevations (mostly below 500m with RMSE value up to 3.5, see

Fig. 5. Performance of the IDW_LN model with (a) the locations of the valid stations; and (b) the elevation of the valid stations.
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Fig. 6(a)). The rain gauge stations situated at higher elevations in the
MDB basin (above 800m) show higher RMSE (values above 4). The BP
values associated with the IDW_LN model are relatively low (mostly
below 30) at the high elevation areas of the basin (above 500m) and
reach to as high as 60 for low elevation areas (below 300m) of the
basin, which is mainly because the sample size of the lower elevation
bands is larger (Fig. 5(b)) as compared to that at the higher elevation

bands.

4.6. Sensitivity of CT and CCR in the IDW_CN model

After studying the performance of the IDW_LN model, now we
analyze the error statistics associated with the IDW_CN model. The
sensitivity analysis of the correlation threshold (CT) and the clustering

Fig. 6. Plots of elevation and error (RMSE and BP) associated with all valid stations for the IDW_LN model.

Table 3
Summary statistics of RMSE associated with the IDW_CN mode.

Error
statistic

[CCR=0.3 to 0.6] [CCR=0.4 to 0.7] [CCR=0.5 to 0.8]

Number of
valid

stations

Average RMSE % Valid stations
showing less
error with
IDW_CN

Number of
valid

stations

Average RMSE % Valid stations
showing less
error with
IDW_CN

Number of
valid

stations

Average RMSE % Valid stations
showing less
error with
IDW_CN

Model
type

IDW_NN IDW_CN IDW_NN IDW_CN IDW_NN IDW_CN

CT
0.300 421 3.189 3.344 30.166 302 3.126 3.346 28.808 146 3.267 3.538 26.712
0.400 394 3.162 3.335 28.934 243 3.287 3.573 23.457 98 3.711 4.207 19.388
0.500 331 3.239 3.470 25.378 184 3.428 3.788 15.217 90 3.687 4.294 12.222
0.600 259 3.182 3.495 15.058 161 3.366 3.868 9.317 94 3.602 4.289 7.447
0.700 177 2.970 3.373 10.734 120 3.139 3.697 5.000 97 3.218 3.928 1.031
0.800 43 2.712 3.485 9.302 28 2.800 3.785 7.143 28 2.800 3.785 7.143
0.900 0 NaN NaN NaN 0 NaN NaN NaN 0 NaN NaN NaN

Table 4
Summary statistics of BP associated with the IDW_CN model.

Error
statistic

[CCR=0.3 to 0.6] [CCR=0.4 to 0.7] [CCR=0.5 to 0.8]

Number of
valid

Stations

Average BP % Valid stations
showing less
error with
IDW_CN

Number of
valid

stations

Average BP % Valid stations
showing less
error with
IDW_CN

Number of
valid

stations

Average BP % Valid stations
showing less
error with
IDW_CN

Model
type

IDW_NN IDW_CN IDW_NN IDW_CN IDW_NN IDW_CN

CT
0.300 421 16.411 17.574 45.131 302 20.222 22.387 44.702 146 31.797 30.968 46.575
0.400 394 11.808 13.015 46.447 243 14.887 15.992 48.184 98 21.164 23.663 43.878
0.500 331 11.541 13.431 45.921 184 14.323 15.788 47.826 90 19.919 22.260 41.111
0.600 259 9.401 11.329 45.560 161 10.840 14.024 45.963 94 12.273 16.032 39.362
0.700 177 8.259 10.6433 41.808 120 8.686 11.223 41.667 97 8.208 11.271 38.144
0.800 43 10.115 16.780 37.209 28 10.729 21.157 28.571 28 10.729 21.157 28.571
0.900 0 NaN NaN NaN 0 NaN NaN NaN 0 NaN NaN NaN
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Fig. 7. Plots of IDW_CN model RMSE and the corresponding IDW_NN model errors for all valid stations.

Fig. 8. Plots of IDW_CN model BP and the corresponding IDW_NN model errors for all valid stations.
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Fig. 9. Performance of the IDW_CN model with (a) the locations of valid stations; and (b) elevations of valid stations.
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coefficient range (CCR) are performed by changing the CT values from
0.3 to 0.9 for three different CC ranges: 0.3 to 0.6, 0.4 to 0.7 and 0.5 to
0.8 respectively in the IDW_CN model. Tables 3 and 4 show that out of
the 430 rain gauge stations, for CCR equal to 0.3 to 0.6, the number of
valid stations ranges from 421 to 0 for different CT values (0.3 to 0.9).
As the CCR increases to 0.5 to 0.8, the selected valid station range
decreases i.e. from 146 to 0. These observations indicate that for higher
CCR, the number of valid stations decreases significantly because the
clusters become more specific for higher CT and CCR.

In terms of the magnitude of errors, Table 3 shows that the average
RMSE increases as the CCR increases for each CT value (0.3 to 0.9),
which is valid for both the IDW_NN and IDW_CN models. By comparing
the average RMSE associated with the IDW_NN and IDW_CN models in
each CCR, it can be concluded that the value of the average RMSE is
relatively higher in the case of reconstructed rainfall using the IDW_CN
model than that using the IDW_NN model for all CCR values. Similar
observation is made also in the case of the average BP (as shown in
Table 4).

Further, to compare the RMSE and BP from the IDW_CN model or
from the IDW_NN model at each of the valid stations, plots of RMSE and
BP associated with the IDW_CN model with the corresponding IDW_NN
model errors for all the valid stations are generated. Figs. 7 and 8 show
that the scatter between the errors associated with each valid station
from both of these IDW models for three CT values (0.2, 0.4, 0.6) and 3
CCR values (0.3 to 0.6, 0.4 to 0.7, 0.5 to 0.8). In both figures, the cloud
of points decreases as the CT and CCR increases because the number of
valid stations decreases significantly at higher CT and CCR (see Tables 3
and 4). As shown in Fig. 7, the RMSE scatter plots shift above the
identity line as CT and CCR increases, which indicates that the error
associated with a valid station increases as CT and CCR increases in the

IDW_CN model. In Fig. 8, the points are scattered almost evenly around
the identity line, hence the associated BP with the IDW_CN model and
the IDW_NN model differs from low to high value.

Tables 3 and 4 also list the percentages of valid stations showing less
RMSE and/or BP, respectively, using the IDW_CN model, for three
different CCR values. The percentage of valid stations with lower RMSE
and BP associated with the IDW_CN model than that from the IDW_NN
decreases as the CT and CCR increase. Hence, the IDW_CN model works
fairly well at lower CT and CCR values when compared to their higher
values.

4.7. Variation of errors in the IDW_CN with locations of valid stations

To investigate the relationship of errors in reconstructing rainfall
data using the IDW_NN and IDW_CN models with the topography of the
rain gauge station, we identify the valid station locations in the MDB
where the IDW_CN model performed better than the IDW_NN model.
The motivation here is to examine whether by introducing the concept
of clusters, the reconstruction model is able to take into account the
topographical variations better or not. Fig. 9(a) shows the performance
of the IDW_CN model compared to that of the IDW_NN model as a
function of the locations of the rain gauges for CCR=0.3 to 0.6. As the
number of valid stations for the CCR values 0.4 to 0.7 and 0.5 to 0.8 are
significantly low (Tables 3 and 4), the locations of valid stations for
these two CCR values are not plotted, for the sack of simplicity. The
locations of valid stations associated with lower RMSE and BP at dif-
ferent CT and CCR do not show any particular trend and are randomly
located in the case of the IDW_CN model. This particular observation
may be due to the specific nature of clusters associated with the
IDW_CN model.

Fig. 10. Plots of elevation and RMSE associated with all valid stations for IDW_CN model.
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Fig. 9(b) shows the performance of the IDW_CN model as a function
of different elevation bands in which the rain gauges are located. For
simplicity in representation, only CT=0.6 and CCR=0.3 to 0.6 are
considered in this figure. The stations with lower RMSE and BP from the
IDW_CN model than the IDW_NN model more or less equally belong to
all elevation ranges. Therefore, it is not straightforward to derive any
definitive conclusion about the effect of topography on the errors in
reconstructing the rainfall using either the IDW_CN model or the
IDW_NN model (Fig. 9(a) and (b)).

4.8. Variation of errors in IDW_CN with elevation of valid stations

Finally, we explore the relationship between the elevations of the
valid stations with the associated error estimates from the IDW_CN
models in reconstructing the rainfall data. In Figs. 10 and 11, RMSE and
BP values associated with each of the valid station is plotted against its
elevation for CT=0.4, 0.6 and 0.8. Fig. 10 indicates that the RMSE is
low at low elevations and increases as the elevation increases for all CT
and CCR. The plot of BP associated with a valid station against the
elevation of station do not show any particular trend (see Fig. 11),
which indicates that the associated BP value is independent of the
elevation of a valid station.

5. Discussion and conclusions

The results from our analysis show that there is no particular model,
among IDW_NN, IDW_LN and IDW_CN, that has consistently the lowest
RMSE and BP associated with all the valid stations. The IDW_LN model
and the IDW_CN model show lower RMSE at about 30% of the stations;
these two models have comparable (the difference is small) RMSE

values at the rest 70% stations (see Tables 2, 3, and 4). Similarly, 50%
of the stations show lower BP, while having no major changes in BP
values at the remaining 50% of the stations. These results indicate that
at least at around 30% of the stations in the IDW_LN model and the
IDW_CN model show better results for rainfall reconstruction.

The effect of topography and elevation of valid stations on the
performance of the three models can be interpreted from Figs. 5 and 9.
As these figures show, the performance of the models is mostly in-
dependent of the location of the rain gauge stations. The effect of ele-
vation of the rain gauge stations on the performance of the models can
be explored further by considering a rain gauge network in which the
rain gauges are distributed evenly in all elevation bands (unlike the
MDB). The plots of the elevation of the rain gauge station versus the
magnitude of the errors (RMSE and BP) (Figs. 10 and 11) show that the
magnitude of RMSE associated with the IDW_LN model and the IDW_CN
model has low values at low elevations and it increases as the elevation
increases, whereas the associated BP is independent of the elevation of
the rain gauge station. This indicates that the performance of the
IDW_NN, IDW_LN and IDW_CN models depend upon the type of error
statistics being considered.

For a natural system, traditional IDW approaches (such as the
IDW_NN model) may be better suited than the networks-based ap-
proach (IDW_LN and IDW_CN), from the perspective of error statistics.
However, they may not be completely effective in accounting the spa-
tial rainfall variability, especially when the complexity of the system is
high, such as where there are significant variations in topography and
elevations. For such situations, the concepts of networks may be better
suited, even when they are not able to completely explain the properties
of the whole system. It is possible that a large part of a basin behaves in
accordance with the spatial correlation assumption inherent in the

Fig. 11. Plots of elevation and BP associated with all valid stations for IDW_CN model.
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traditional approaches, while the other parts may have properties that
may be better explained using the concepts of networks. As seen from
the results of the present study, at some (valid) stations in the MDB, the
traditional IDW_NN model provided very high errors, likely due to the
significant variations in topography and elevations of the surrounding
conditions. Therefore, using the new concept of networks (IDW_LN and
IDW_CN models) along with traditional spatial correlation (IDW_NN)
approach could very likely yield a much better methodology for the
reconstruction of rainfall and other meteorological variables. The
findings from this study are certainly helpful in filling the gaps in me-
teorological data, developing interpolated surface by carefully selecting
the valid stations and classifying a region (catchment), among others.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgement

This research has been completed thanks to the support of the
Science and Engineering Research Board (SERB), project number CRG/
2018/000649 awarded to Sanjeev Kumar Jha. We thank two anon-
ymous reviewers for their comments and suggestions on an earlier
version of the manuscript, which has helped improve the quality and
presentation of our work.

References

Barabási, A., Albert, R., 1999. Emergence of scaling in random networks. science.scien-
cemag.org.

Barros, A.P., Lettenmaier, D.P., 1993. Dynamic modeling of the spatial distribution of
precipitation in remote mountainous areas. Mon. Weather Rev. 121, 1195–1214.

Barry, R.G., 1992. Mountain Weather and Climate [WWW Document]. Psychol. Press.
Berndtsson, R., 1988. Temporal variability in spatial correlation of daily rainfall. Water

Resour. Res. 24, 1511–1517. https://doi.org/10.1029/WR024i009p01511.
Boers, N., Bookhagen, B., Marwan, N., Kurths, J., Marengo, J., 2013. Complex networks

identify spatial patterns of extreme rainfall events of the South American Monsoon
System. Geophys. Res. Lett. 40, 4386–4392. https://doi.org/10.1002/grl.50681.

Boers, N., Donner, R.V., Bookhagen, B., Kurths, J., 2015. Complex network analysis helps
to identify impacts of the El Niño Southern Oscillation on moisture divergence in
South America. Clim. Dyn. 45, 619–632. https://doi.org/10.1007/s00382-014-
2265-7.

Buytaert, W., Celleri, R., Willems, P., Bièvre, B. De, Wyseure, G., 2006. Spatial and
temporal rainfall variability in mountainous areas: A case study from the south
Ecuadorian Andes. J. Hydrol. 329, 413–421. https://doi.org/10.1016/j.jhydrol.2006.
02.031.

Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, M.K., Taylor, G.H., Curtis, J.,
Pasteris, P.P., 2008. Physiographically sensitive mapping of climatological tem-
perature and precipitation across the conterminous United States. Int. J. Climatol. 28,
2031–2064. https://doi.org/10.1002/joc.1688.

Di Piazza, A., Conti, F. Lo, Noto, L.V., Viola, F., La Loggia, G., 2011. Comparative analysis
of different techniques for spatial interpolation of rainfall data to create a serially
complete monthly time series of precipitation for Sicily, Italy. Int. J. Appl. Earth Obs.
Geoinf. 13, 396–408. https://doi.org/10.1016/j.jag.2011.01.005.

Estrada, E., 2012. The Structure of Complex Networks: Theory and Applications [WWW
Document]. Oxford Univ. Press.

Girvan, M., Newman, M.E.J., 2002. Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. USA 99, 7821–7826. https://doi.org/10.1073/pnas.
122653799.

Griffith, D.A., 1992. What is spatial autocorrelation? Reflections on the past 25 years of
spatial statistics. Espace. Geogr. https://doi.org/10.2307/44381737.

Jha, S.K., Sivakumar, B., 2017. Complex networks for rainfall modeling: spatial connec-
tions, temporal scale, and network size. J. Hydrol. 554, 482–489. https://doi.org/10.
1016/j.jhydrol.2017.09.030.

Jha, S.K., Zhao, H., Woldemeskel, F.M., Sivakumar, B., 2015. Network theory and spatial
rainfall connections: an interpretation. J. Hydrol. 527, 13–19. https://doi.org/10.
1016/j.jhydrol.2015.04.035.

Konapala, G., Mishra, A., 2017. Review of complex networks application in hydroclimatic
extremes with an implementation to characterize spatio-temporal drought propaga-
tion in continental USA. J. Hydrol. 555, 600–620. https://doi.org/10.1016/j.jhydrol.
2017.10.033.

Li, T., Wang, G., Chen, J., 2010. A modified binary tree codification of drainage networks
to support complex hydrological models. Comput. Geosci. 36, 1427–1435. https://
doi.org/10.1016/j.cageo.2010.04.009.

Li, Z., Yang, D., Hong, Y., Zhang, J., Qi, Y., 2014. Characterizing spatiotemporal varia-
tions of hourly rainfall by gauge and radar in the mountainous three gorges region. J.
Appl. Meteorol. Climatol. 53, 873–889. https://doi.org/10.1175/JAMC-D-13-0277.1.

Malik, N., Bookhagen, B., Marwan, N., Kurths, J., 2012. Analysis of spatial and temporal
extreme monsoonal rainfall over South Asia using complex networks. Clim. Dyn. 39,
971–987. https://doi.org/10.1007/s00382-011-1156-4.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U., 2002. Network
motifs: simple building blocks of complex networks. Science (80-.) 298, 824–827.
https://doi.org/10.1126/science.298.5594.824.

Naufan, I., Sivakumar, B., Woldemeskel, F.M., Raghavan, S.V., Vu, M.T., Liong, S.Y.,
2018. Spatial connections in regional climate model rainfall outputs at different
temporal scales: application of network theory. J. Hydrol. 556, 1232–1243. https://
doi.org/10.1016/j.jhydrol.2017.05.029.

Newman, M., 2012. Networks: An Introduction. 2010: Oxford Univ. Press. Artif. Life
241–242.

Robertson, J.C., 1967. The symap programme for computer mapping. Cartogr. J. 4,
108–113. https://doi.org/10.1179/caj.1967.4.2.108.

Scarsoglio, S., Laio, F., Ridolfi, L., 2013. Climate dynamics: A network-based approach for
the analysis of global precipitation. PLoS One 8. https://doi.org/10.1371/journal.
pone.0071129.

Shi, H., Chen, J., Li, T., Wang, G., 2017. A new method for estimation of spatially dis-
tributed rainfall through merging satellite observations, raingauge records, and ter-
rain digital elevation model data. J. Hydro-Environment Res. https://doi.org/10.
1016/j.jher.2017.10.006.

Sivakumar, B., 2015. Networks: a generic theory for hydrology? Stoch. Environ. Res. Risk
Assess. 29, 761–771. https://doi.org/10.1007/s00477-014-0902-7.

Sivakumar, B., Woldemeskel, F.M., 2015. A network-based analysis of spatial rainfall
connections. Environ. Model. Softw. 69, 55–62. https://doi.org/10.1016/j.envsoft.
2015.02.020.

Sivakumar, B., Woldemeskel, F.M., 2014. Complex networks for streamflow dynamics.
Hydrol. Earth Syst. Sci. Discuss.

Thiessen, A.H., 1911. Precipitation averages for large areas. Mon. Weather Rev. 39,
1082–1089.

Tobler, W.R., 1970. A Computer Movie Simulating Urban Growth in the Detroit Region.
Econ. Geogr. 46, 234. https://doi.org/10.2307/143141.

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of ‘small-world’ networks. Nature
393, 440–442. https://doi.org/10.1038/30918.

S. Tiwari, et al. Journal of Hydrology 579 (2019) 124185

13

http://refhub.elsevier.com/S0022-1694(19)30920-5/h0010
http://refhub.elsevier.com/S0022-1694(19)30920-5/h0010
http://refhub.elsevier.com/S0022-1694(19)30920-5/h0015
https://doi.org/10.1029/WR024i009p01511
https://doi.org/10.1002/grl.50681
https://doi.org/10.1007/s00382-014-2265-7
https://doi.org/10.1007/s00382-014-2265-7
https://doi.org/10.1016/j.jhydrol.2006.02.031
https://doi.org/10.1016/j.jhydrol.2006.02.031
https://doi.org/10.1002/joc.1688
https://doi.org/10.1016/j.jag.2011.01.005
http://refhub.elsevier.com/S0022-1694(19)30920-5/h0050
http://refhub.elsevier.com/S0022-1694(19)30920-5/h0050
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1016/j.jhydrol.2017.09.030
https://doi.org/10.1016/j.jhydrol.2017.09.030
https://doi.org/10.1016/j.jhydrol.2015.04.035
https://doi.org/10.1016/j.jhydrol.2015.04.035
https://doi.org/10.1016/j.jhydrol.2017.10.033
https://doi.org/10.1016/j.jhydrol.2017.10.033
https://doi.org/10.1016/j.cageo.2010.04.009
https://doi.org/10.1016/j.cageo.2010.04.009
https://doi.org/10.1175/JAMC-D-13-0277.1
https://doi.org/10.1007/s00382-011-1156-4
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1016/j.jhydrol.2017.05.029
https://doi.org/10.1016/j.jhydrol.2017.05.029
https://doi.org/10.1179/caj.1967.4.2.108
https://doi.org/10.1371/journal.pone.0071129
https://doi.org/10.1371/journal.pone.0071129
https://doi.org/10.1016/j.jher.2017.10.006
https://doi.org/10.1016/j.jher.2017.10.006
https://doi.org/10.1007/s00477-014-0902-7
https://doi.org/10.1016/j.envsoft.2015.02.020
https://doi.org/10.1016/j.envsoft.2015.02.020
http://refhub.elsevier.com/S0022-1694(19)30920-5/h0135
http://refhub.elsevier.com/S0022-1694(19)30920-5/h0135
http://refhub.elsevier.com/S0022-1694(19)30920-5/h0140
http://refhub.elsevier.com/S0022-1694(19)30920-5/h0140
https://doi.org/10.2307/143141
https://doi.org/10.1038/30918

	Reconstruction of daily rainfall data using the concepts of networks: Accounting for spatial connections in neighborhood selection
	Introduction
	Methodology
	IDW with nearest neighbors (IDW_NN)
	IDW with linked neighbors (IDW_LN)
	IDW with clustered neighbors (IDW_CN)
	Verification of the interpolated rainfall
	Experimental setup

	Study area and dataset
	Results
	Sensitivity of the number of neighbors in IDW_NN model
	Concept of a valid station
	Sensitivity of the CT in IDW_LN model
	Variation of errors in IDW_LN with location of valid stations
	Variation of errors in the IDW_LN model with elevations of valid stations
	Sensitivity of CT and CCR in the IDW_CN model
	Variation of errors in the IDW_CN with locations of valid stations
	Variation of errors in IDW_CN with elevation of valid stations

	Discussion and conclusions
	mk:H1_19
	Acknowledgement
	References




